Metamath Proof Explorer


Theorem bnj524

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj524.1
|- ( ph <-> ps )
bnj524.2
|- A e. _V
Assertion bnj524
|- ( [. A / x ]. ph <-> [. A / x ]. ps )

Proof

Step Hyp Ref Expression
1 bnj524.1
 |-  ( ph <-> ps )
2 bnj524.2
 |-  A e. _V
3 1 sbcbii
 |-  ( [. A / x ]. ph <-> [. A / x ]. ps )