Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj528.1 | |- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
|
Assertion | bnj528 | |- G e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj528.1 | |- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
|
2 | 1 | bnj918 | |- G e. _V |