Metamath Proof Explorer


Theorem bnj528

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj528.1
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } )
Assertion bnj528
|- G e. _V

Proof

Step Hyp Ref Expression
1 bnj528.1
 |-  G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } )
2 1 bnj918
 |-  G e. _V