Metamath Proof Explorer


Theorem bnj706

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj706.1
|- ( ps -> ta )
Assertion bnj706
|- ( ( ph /\ ps /\ ch /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 bnj706.1
 |-  ( ps -> ta )
2 bnj643
 |-  ( ( ph /\ ps /\ ch /\ th ) -> ps )
3 2 1 syl
 |-  ( ( ph /\ ps /\ ch /\ th ) -> ta )