Metamath Proof Explorer


Theorem br1steq

Description: Uniqueness condition for the binary relation 1st . (Contributed by Scott Fenton, 11-Apr-2014) (Proof shortened by Mario Carneiro, 3-May-2015)

Ref Expression
Hypotheses br1steq.1
|- A e. _V
br1steq.2
|- B e. _V
Assertion br1steq
|- ( <. A , B >. 1st C <-> C = A )

Proof

Step Hyp Ref Expression
1 br1steq.1
 |-  A e. _V
2 br1steq.2
 |-  B e. _V
3 br1steqg
 |-  ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. 1st C <-> C = A ) )
4 1 2 3 mp2an
 |-  ( <. A , B >. 1st C <-> C = A )