Description: If two sets are in a binary relation, the relation cannot be empty. (Contributed by Alexander van der Vekens, 7-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | brne0 | |- ( A R B -> R =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
2 | ne0i | |- ( <. A , B >. e. R -> R =/= (/) ) |
|
3 | 1 2 | sylbi | |- ( A R B -> R =/= (/) ) |