Metamath Proof Explorer


Theorem brralrspcev

Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022)

Ref Expression
Assertion brralrspcev
|- ( ( B e. X /\ A. y e. Y A R B ) -> E. x e. X A. y e. Y A R x )

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( x = B -> ( A R x <-> A R B ) )
2 1 ralbidv
 |-  ( x = B -> ( A. y e. Y A R x <-> A. y e. Y A R B ) )
3 2 rspcev
 |-  ( ( B e. X /\ A. y e. Y A R B ) -> E. x e. X A. y e. Y A R x )