Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | brralrspcev | |- ( ( B e. X /\ A. y e. Y A R B ) -> E. x e. X A. y e. Y A R x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |- ( x = B -> ( A R x <-> A R B ) ) |
|
2 | 1 | ralbidv | |- ( x = B -> ( A. y e. Y A R x <-> A. y e. Y A R B ) ) |
3 | 2 | rspcev | |- ( ( B e. X /\ A. y e. Y A R B ) -> E. x e. X A. y e. Y A R x ) |