Metamath Proof Explorer


Theorem ccondx

Description: Index value of the df-cco slot. (Contributed by Mario Carneiro, 7-Jan-2017) (New usage is discouraged.)

Ref Expression
Assertion ccondx
|- ( comp ` ndx ) = ; 1 5

Proof

Step Hyp Ref Expression
1 df-cco
 |-  comp = Slot ; 1 5
2 1nn0
 |-  1 e. NN0
3 5nn
 |-  5 e. NN
4 2 3 decnncl
 |-  ; 1 5 e. NN
5 1 4 ndxarg
 |-  ( comp ` ndx ) = ; 1 5