Metamath Proof Explorer


Theorem cdeqal1

Description: Distribute conditional equality over quantification. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 11-Aug-2016) (New usage is discouraged.)

Ref Expression
Hypothesis cdeqnot.1
|- CondEq ( x = y -> ( ph <-> ps ) )
Assertion cdeqal1
|- CondEq ( x = y -> ( A. x ph <-> A. y ps ) )

Proof

Step Hyp Ref Expression
1 cdeqnot.1
 |-  CondEq ( x = y -> ( ph <-> ps ) )
2 1 cdeqri
 |-  ( x = y -> ( ph <-> ps ) )
3 2 cbvalv
 |-  ( A. x ph <-> A. y ps )
4 3 cdeqth
 |-  CondEq ( x = y -> ( A. x ph <-> A. y ps ) )