Description: Distribute conditional equality over quantification. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 11-Aug-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | cdeqal1 | |- CondEq ( x = y -> ( A. x ph <-> A. y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
| 2 | 1 | cdeqri | |- ( x = y -> ( ph <-> ps ) ) |
| 3 | 2 | cbvalv | |- ( A. x ph <-> A. y ps ) |
| 4 | 3 | cdeqth | |- CondEq ( x = y -> ( A. x ph <-> A. y ps ) ) |