Metamath Proof Explorer


Theorem cdleme43aN

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v_1). (Contributed by NM, 20-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme43.b
|- B = ( Base ` K )
cdleme43.l
|- .<_ = ( le ` K )
cdleme43.j
|- .\/ = ( join ` K )
cdleme43.m
|- ./\ = ( meet ` K )
cdleme43.a
|- A = ( Atoms ` K )
cdleme43.h
|- H = ( LHyp ` K )
cdleme43.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme43.x
|- X = ( ( Q .\/ P ) ./\ W )
cdleme43.c
|- C = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
cdleme43.f
|- Z = ( ( P .\/ Q ) ./\ ( C .\/ ( ( R .\/ S ) ./\ W ) ) )
cdleme43.d
|- D = ( ( S .\/ X ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) )
cdleme43.g
|- G = ( ( Q .\/ P ) ./\ ( D .\/ ( ( Z .\/ S ) ./\ W ) ) )
cdleme43.e
|- E = ( ( D .\/ U ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) )
cdleme43.v
|- V = ( ( Z .\/ S ) ./\ W )
cdleme43.y
|- Y = ( ( R .\/ D ) ./\ W )
Assertion cdleme43aN
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> G = ( ( P .\/ Q ) ./\ ( D .\/ V ) ) )

Proof

Step Hyp Ref Expression
1 cdleme43.b
 |-  B = ( Base ` K )
2 cdleme43.l
 |-  .<_ = ( le ` K )
3 cdleme43.j
 |-  .\/ = ( join ` K )
4 cdleme43.m
 |-  ./\ = ( meet ` K )
5 cdleme43.a
 |-  A = ( Atoms ` K )
6 cdleme43.h
 |-  H = ( LHyp ` K )
7 cdleme43.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdleme43.x
 |-  X = ( ( Q .\/ P ) ./\ W )
9 cdleme43.c
 |-  C = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
10 cdleme43.f
 |-  Z = ( ( P .\/ Q ) ./\ ( C .\/ ( ( R .\/ S ) ./\ W ) ) )
11 cdleme43.d
 |-  D = ( ( S .\/ X ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) )
12 cdleme43.g
 |-  G = ( ( Q .\/ P ) ./\ ( D .\/ ( ( Z .\/ S ) ./\ W ) ) )
13 cdleme43.e
 |-  E = ( ( D .\/ U ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) )
14 cdleme43.v
 |-  V = ( ( Z .\/ S ) ./\ W )
15 cdleme43.y
 |-  Y = ( ( R .\/ D ) ./\ W )
16 3 5 hlatjcom
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) )
17 14 oveq2i
 |-  ( D .\/ V ) = ( D .\/ ( ( Z .\/ S ) ./\ W ) )
18 17 a1i
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( D .\/ V ) = ( D .\/ ( ( Z .\/ S ) ./\ W ) ) )
19 16 18 oveq12d
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( P .\/ Q ) ./\ ( D .\/ V ) ) = ( ( Q .\/ P ) ./\ ( D .\/ ( ( Z .\/ S ) ./\ W ) ) ) )
20 12 19 eqtr4id
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> G = ( ( P .\/ Q ) ./\ ( D .\/ V ) ) )