Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v_1). (Contributed by NM, 20-Mar-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme43.b | |- B = ( Base ` K ) |
|
cdleme43.l | |- .<_ = ( le ` K ) |
||
cdleme43.j | |- .\/ = ( join ` K ) |
||
cdleme43.m | |- ./\ = ( meet ` K ) |
||
cdleme43.a | |- A = ( Atoms ` K ) |
||
cdleme43.h | |- H = ( LHyp ` K ) |
||
cdleme43.u | |- U = ( ( P .\/ Q ) ./\ W ) |
||
cdleme43.x | |- X = ( ( Q .\/ P ) ./\ W ) |
||
cdleme43.c | |- C = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
||
cdleme43.f | |- Z = ( ( P .\/ Q ) ./\ ( C .\/ ( ( R .\/ S ) ./\ W ) ) ) |
||
cdleme43.d | |- D = ( ( S .\/ X ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) |
||
cdleme43.g | |- G = ( ( Q .\/ P ) ./\ ( D .\/ ( ( Z .\/ S ) ./\ W ) ) ) |
||
cdleme43.e | |- E = ( ( D .\/ U ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) ) |
||
cdleme43.v | |- V = ( ( Z .\/ S ) ./\ W ) |
||
cdleme43.y | |- Y = ( ( R .\/ D ) ./\ W ) |
||
Assertion | cdleme43aN | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> G = ( ( P .\/ Q ) ./\ ( D .\/ V ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme43.b | |- B = ( Base ` K ) |
|
2 | cdleme43.l | |- .<_ = ( le ` K ) |
|
3 | cdleme43.j | |- .\/ = ( join ` K ) |
|
4 | cdleme43.m | |- ./\ = ( meet ` K ) |
|
5 | cdleme43.a | |- A = ( Atoms ` K ) |
|
6 | cdleme43.h | |- H = ( LHyp ` K ) |
|
7 | cdleme43.u | |- U = ( ( P .\/ Q ) ./\ W ) |
|
8 | cdleme43.x | |- X = ( ( Q .\/ P ) ./\ W ) |
|
9 | cdleme43.c | |- C = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
|
10 | cdleme43.f | |- Z = ( ( P .\/ Q ) ./\ ( C .\/ ( ( R .\/ S ) ./\ W ) ) ) |
|
11 | cdleme43.d | |- D = ( ( S .\/ X ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) |
|
12 | cdleme43.g | |- G = ( ( Q .\/ P ) ./\ ( D .\/ ( ( Z .\/ S ) ./\ W ) ) ) |
|
13 | cdleme43.e | |- E = ( ( D .\/ U ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) ) |
|
14 | cdleme43.v | |- V = ( ( Z .\/ S ) ./\ W ) |
|
15 | cdleme43.y | |- Y = ( ( R .\/ D ) ./\ W ) |
|
16 | 3 5 | hlatjcom | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
17 | 14 | oveq2i | |- ( D .\/ V ) = ( D .\/ ( ( Z .\/ S ) ./\ W ) ) |
18 | 17 | a1i | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( D .\/ V ) = ( D .\/ ( ( Z .\/ S ) ./\ W ) ) ) |
19 | 16 18 | oveq12d | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( P .\/ Q ) ./\ ( D .\/ V ) ) = ( ( Q .\/ P ) ./\ ( D .\/ ( ( Z .\/ S ) ./\ W ) ) ) ) |
20 | 12 19 | eqtr4id | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> G = ( ( P .\/ Q ) ./\ ( D .\/ V ) ) ) |