Metamath Proof Explorer


Theorem cdlemg1b2

Description: This theorem can be used to shorten G = hypothesis. TODO: Fix comment. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemg1.b
|- B = ( Base ` K )
cdlemg1.l
|- .<_ = ( le ` K )
cdlemg1.j
|- .\/ = ( join ` K )
cdlemg1.m
|- ./\ = ( meet ` K )
cdlemg1.a
|- A = ( Atoms ` K )
cdlemg1.h
|- H = ( LHyp ` K )
cdlemg1.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemg1.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemg1.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemg1.g
|- G = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
cdlemg1.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg1.f
|- F = ( iota_ f e. T ( f ` P ) = Q )
Assertion cdlemg1b2
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F = G )

Proof

Step Hyp Ref Expression
1 cdlemg1.b
 |-  B = ( Base ` K )
2 cdlemg1.l
 |-  .<_ = ( le ` K )
3 cdlemg1.j
 |-  .\/ = ( join ` K )
4 cdlemg1.m
 |-  ./\ = ( meet ` K )
5 cdlemg1.a
 |-  A = ( Atoms ` K )
6 cdlemg1.h
 |-  H = ( LHyp ` K )
7 cdlemg1.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemg1.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemg1.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemg1.g
 |-  G = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 cdlemg1.t
 |-  T = ( ( LTrn ` K ) ` W )
12 cdlemg1.f
 |-  F = ( iota_ f e. T ( f ` P ) = Q )
13 eqid
 |-  ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
14 1 2 3 4 5 6 7 8 9 13 11 cdlemg1a
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) = ( iota_ f e. T ( f ` P ) = Q ) )
15 12 14 eqtr4id
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) )
16 15 10 eqtr4di
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F = G )