| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg4.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg4.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | cdlemg4.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | cdlemg4.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 5 |  | cdlemg4.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 6 |  | cdlemg4.j |  |-  .\/ = ( join ` K ) | 
						
							| 7 |  | cdlemg4b.v |  |-  V = ( R ` G ) | 
						
							| 8 | 1 2 3 4 5 6 7 | cdlemg4b2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( ( G ` P ) .\/ V ) = ( P .\/ ( G ` P ) ) ) | 
						
							| 9 | 1 2 3 4 5 6 7 | cdlemg4b1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( P .\/ V ) = ( P .\/ ( G ` P ) ) ) | 
						
							| 10 | 8 9 | eqtr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ G e. T ) -> ( ( G ` P ) .\/ V ) = ( P .\/ V ) ) |