Description: cdlemkyu with some hypotheses eliminated. TODO: Clean all this up. (Contributed by NM, 21-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |- B = ( Base ` K ) |
|
cdlemk5.l | |- .<_ = ( le ` K ) |
||
cdlemk5.j | |- .\/ = ( join ` K ) |
||
cdlemk5.m | |- ./\ = ( meet ` K ) |
||
cdlemk5.a | |- A = ( Atoms ` K ) |
||
cdlemk5.h | |- H = ( LHyp ` K ) |
||
cdlemk5.t | |- T = ( ( LTrn ` K ) ` W ) |
||
cdlemk5.r | |- R = ( ( trL ` K ) ` W ) |
||
cdlemk5.z | |- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
||
cdlemk5.y | |- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
||
cdlemk5c.s | |- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
||
cdlemk5a.u2 | |- C = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` b ) ` P ) .\/ ( R ` ( e o. `' b ) ) ) ) ) ) |
||
Assertion | cdlemkyuu | |- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> [_ G / g ]_ Y = ( ( C ` G ) ` P ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |- B = ( Base ` K ) |
|
2 | cdlemk5.l | |- .<_ = ( le ` K ) |
|
3 | cdlemk5.j | |- .\/ = ( join ` K ) |
|
4 | cdlemk5.m | |- ./\ = ( meet ` K ) |
|
5 | cdlemk5.a | |- A = ( Atoms ` K ) |
|
6 | cdlemk5.h | |- H = ( LHyp ` K ) |
|
7 | cdlemk5.t | |- T = ( ( LTrn ` K ) ` W ) |
|
8 | cdlemk5.r | |- R = ( ( trL ` K ) ` W ) |
|
9 | cdlemk5.z | |- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
|
10 | cdlemk5.y | |- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
|
11 | cdlemk5c.s | |- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
|
12 | cdlemk5a.u2 | |- C = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` b ) ` P ) .\/ ( R ` ( e o. `' b ) ) ) ) ) ) |
|
13 | eqid | |- ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) |
|
14 | eqid | |- ( S ` b ) = ( S ` b ) |
|
15 | 1 2 3 4 5 6 7 8 9 10 11 13 14 12 | cdlemkyu | |- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> [_ G / g ]_ Y = ( ( C ` G ) ` P ) ) |