Metamath Proof Explorer


Theorem ceige

Description: The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007)

Ref Expression
Assertion ceige
|- ( A e. RR -> A <_ -u ( |_ ` -u A ) )

Proof

Step Hyp Ref Expression
1 renegcl
 |-  ( A e. RR -> -u A e. RR )
2 reflcl
 |-  ( -u A e. RR -> ( |_ ` -u A ) e. RR )
3 1 2 syl
 |-  ( A e. RR -> ( |_ ` -u A ) e. RR )
4 flle
 |-  ( -u A e. RR -> ( |_ ` -u A ) <_ -u A )
5 1 4 syl
 |-  ( A e. RR -> ( |_ ` -u A ) <_ -u A )
6 5 adantr
 |-  ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> ( |_ ` -u A ) <_ -u A )
7 lenegcon2
 |-  ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> ( A <_ -u ( |_ ` -u A ) <-> ( |_ ` -u A ) <_ -u A ) )
8 6 7 mpbird
 |-  ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> A <_ -u ( |_ ` -u A ) )
9 3 8 mpdan
 |-  ( A e. RR -> A <_ -u ( |_ ` -u A ) )