| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 2 |
|
reflcl |
|- ( -u A e. RR -> ( |_ ` -u A ) e. RR ) |
| 3 |
1 2
|
syl |
|- ( A e. RR -> ( |_ ` -u A ) e. RR ) |
| 4 |
|
flle |
|- ( -u A e. RR -> ( |_ ` -u A ) <_ -u A ) |
| 5 |
1 4
|
syl |
|- ( A e. RR -> ( |_ ` -u A ) <_ -u A ) |
| 6 |
5
|
adantr |
|- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> ( |_ ` -u A ) <_ -u A ) |
| 7 |
|
lenegcon2 |
|- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> ( A <_ -u ( |_ ` -u A ) <-> ( |_ ` -u A ) <_ -u A ) ) |
| 8 |
6 7
|
mpbird |
|- ( ( A e. RR /\ ( |_ ` -u A ) e. RR ) -> A <_ -u ( |_ ` -u A ) ) |
| 9 |
3 8
|
mpdan |
|- ( A e. RR -> A <_ -u ( |_ ` -u A ) ) |