Metamath Proof Explorer


Theorem celarent

Description: "Celarent", one of the syllogisms of Aristotelian logic. No ph is ps , and all ch is ph , therefore no ch is ps . Instance of barbara . In Aristotelian notation, EAE-1: MeP and SaM therefore SeP. For example, given the "No reptiles have fur" and "All snakes are reptiles", therefore "No snakes have fur". Example from https://en.wikipedia.org/wiki/Syllogism . (Contributed by David A. Wheeler, 24-Aug-2016)

Ref Expression
Hypotheses celarent.maj
|- A. x ( ph -> -. ps )
celarent.min
|- A. x ( ch -> ph )
Assertion celarent
|- A. x ( ch -> -. ps )

Proof

Step Hyp Ref Expression
1 celarent.maj
 |-  A. x ( ph -> -. ps )
2 celarent.min
 |-  A. x ( ch -> ph )
3 1 2 barbara
 |-  A. x ( ch -> -. ps )