Description: Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgcgrxfr.p | |- P = ( Base ` G ) |
|
| tgcgrxfr.m | |- .- = ( dist ` G ) |
||
| tgcgrxfr.i | |- I = ( Itv ` G ) |
||
| tgcgrxfr.r | |- .~ = ( cgrG ` G ) |
||
| tgcgrxfr.g | |- ( ph -> G e. TarskiG ) |
||
| tgbtwnxfr.a | |- ( ph -> A e. P ) |
||
| tgbtwnxfr.b | |- ( ph -> B e. P ) |
||
| tgbtwnxfr.c | |- ( ph -> C e. P ) |
||
| Assertion | cgr3id | |- ( ph -> <" A B C "> .~ <" A B C "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrxfr.p | |- P = ( Base ` G ) |
|
| 2 | tgcgrxfr.m | |- .- = ( dist ` G ) |
|
| 3 | tgcgrxfr.i | |- I = ( Itv ` G ) |
|
| 4 | tgcgrxfr.r | |- .~ = ( cgrG ` G ) |
|
| 5 | tgcgrxfr.g | |- ( ph -> G e. TarskiG ) |
|
| 6 | tgbtwnxfr.a | |- ( ph -> A e. P ) |
|
| 7 | tgbtwnxfr.b | |- ( ph -> B e. P ) |
|
| 8 | tgbtwnxfr.c | |- ( ph -> C e. P ) |
|
| 9 | eqidd | |- ( ph -> ( A .- B ) = ( A .- B ) ) |
|
| 10 | eqidd | |- ( ph -> ( B .- C ) = ( B .- C ) ) |
|
| 11 | eqidd | |- ( ph -> ( C .- A ) = ( C .- A ) ) |
|
| 12 | 1 2 4 5 6 7 8 6 7 8 9 10 11 | trgcgr | |- ( ph -> <" A B C "> .~ <" A B C "> ) |