Metamath Proof Explorer


Theorem cgr3id

Description: Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p
|- P = ( Base ` G )
tgcgrxfr.m
|- .- = ( dist ` G )
tgcgrxfr.i
|- I = ( Itv ` G )
tgcgrxfr.r
|- .~ = ( cgrG ` G )
tgcgrxfr.g
|- ( ph -> G e. TarskiG )
tgbtwnxfr.a
|- ( ph -> A e. P )
tgbtwnxfr.b
|- ( ph -> B e. P )
tgbtwnxfr.c
|- ( ph -> C e. P )
Assertion cgr3id
|- ( ph -> <" A B C "> .~ <" A B C "> )

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p
 |-  P = ( Base ` G )
2 tgcgrxfr.m
 |-  .- = ( dist ` G )
3 tgcgrxfr.i
 |-  I = ( Itv ` G )
4 tgcgrxfr.r
 |-  .~ = ( cgrG ` G )
5 tgcgrxfr.g
 |-  ( ph -> G e. TarskiG )
6 tgbtwnxfr.a
 |-  ( ph -> A e. P )
7 tgbtwnxfr.b
 |-  ( ph -> B e. P )
8 tgbtwnxfr.c
 |-  ( ph -> C e. P )
9 eqidd
 |-  ( ph -> ( A .- B ) = ( A .- B ) )
10 eqidd
 |-  ( ph -> ( B .- C ) = ( B .- C ) )
11 eqidd
 |-  ( ph -> ( C .- A ) = ( C .- A ) )
12 1 2 4 5 6 7 8 6 7 8 9 10 11 trgcgr
 |-  ( ph -> <" A B C "> .~ <" A B C "> )