| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgcgrxfr.p |
|- P = ( Base ` G ) |
| 2 |
|
tgcgrxfr.m |
|- .- = ( dist ` G ) |
| 3 |
|
tgcgrxfr.i |
|- I = ( Itv ` G ) |
| 4 |
|
tgcgrxfr.r |
|- .~ = ( cgrG ` G ) |
| 5 |
|
tgcgrxfr.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
tgbtwnxfr.a |
|- ( ph -> A e. P ) |
| 7 |
|
tgbtwnxfr.b |
|- ( ph -> B e. P ) |
| 8 |
|
tgbtwnxfr.c |
|- ( ph -> C e. P ) |
| 9 |
|
tgbtwnxfr.d |
|- ( ph -> D e. P ) |
| 10 |
|
tgbtwnxfr.e |
|- ( ph -> E e. P ) |
| 11 |
|
tgbtwnxfr.f |
|- ( ph -> F e. P ) |
| 12 |
|
tgbtwnxfr.2 |
|- ( ph -> <" A B C "> .~ <" D E F "> ) |
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cgr3simp1 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
| 14 |
1 2 3 5 6 7 9 10 13
|
tgcgrcomlr |
|- ( ph -> ( B .- A ) = ( E .- D ) ) |
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cgr3simp3 |
|- ( ph -> ( C .- A ) = ( F .- D ) ) |
| 16 |
1 2 3 5 8 6 11 9 15
|
tgcgrcomlr |
|- ( ph -> ( A .- C ) = ( D .- F ) ) |
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cgr3simp2 |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |
| 18 |
1 2 3 5 7 8 10 11 17
|
tgcgrcomlr |
|- ( ph -> ( C .- B ) = ( F .- E ) ) |
| 19 |
1 2 4 5 7 6 8 10 9 11 14 16 18
|
trgcgr |
|- ( ph -> <" B A C "> .~ <" E D F "> ) |