Description: The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ch0 | |- ( H e. CH -> 0h e. H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh | |- ( H e. CH -> H e. SH ) |
|
2 | sh0 | |- ( H e. SH -> 0h e. H ) |
|
3 | 1 2 | syl | |- ( H e. CH -> 0h e. H ) |