Description: The value of the supremum of a set of closed subspaces of Hilbert space. For an alternate version of the value, see chsupval2 . (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsupval | |- ( A C_ CH -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsspwh | |- CH C_ ~P ~H |
|
| 2 | sstr2 | |- ( A C_ CH -> ( CH C_ ~P ~H -> A C_ ~P ~H ) ) |
|
| 3 | 1 2 | mpi | |- ( A C_ CH -> A C_ ~P ~H ) |
| 4 | hsupval | |- ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
|
| 5 | 3 4 | syl | |- ( A C_ CH -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |