Metamath Proof Explorer


Theorem cjaddi

Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of Gleason p. 133. (Contributed by NM, 28-Jul-1999)

Ref Expression
Hypotheses recl.1
|- A e. CC
readdi.2
|- B e. CC
Assertion cjaddi
|- ( * ` ( A + B ) ) = ( ( * ` A ) + ( * ` B ) )

Proof

Step Hyp Ref Expression
1 recl.1
 |-  A e. CC
2 readdi.2
 |-  B e. CC
3 cjadd
 |-  ( ( A e. CC /\ B e. CC ) -> ( * ` ( A + B ) ) = ( ( * ` A ) + ( * ` B ) ) )
4 1 2 3 mp2an
 |-  ( * ` ( A + B ) ) = ( ( * ` A ) + ( * ` B ) )