Description: The size of the closed neighborhood of a vertex is at most the number of vertices of a graph. (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbgrlevtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | clnbgrlevtx | |- ( # ` ( G ClNeighbVtx U ) ) <_ ( # ` V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrlevtx.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | fvexi | |- V e. _V |
| 3 | 1 | clnbgrssvtx | |- ( G ClNeighbVtx U ) C_ V |
| 4 | hashss | |- ( ( V e. _V /\ ( G ClNeighbVtx U ) C_ V ) -> ( # ` ( G ClNeighbVtx U ) ) <_ ( # ` V ) ) |
|
| 5 | 2 3 4 | mp2an | |- ( # ` ( G ClNeighbVtx U ) ) <_ ( # ` V ) |