Description: The set of closed walks (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018) (Revised by AV, 16-Feb-2021) (Revised by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwlks | |- ( ClWalks ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd | |- ( g = G -> ( ( p ` 0 ) = ( p ` ( # ` f ) ) <-> ( p ` 0 ) = ( p ` ( # ` f ) ) ) ) |
|
| 2 | df-clwlks | |- ClWalks = ( g e. _V |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } ) |
|
| 3 | 1 2 | fvmptopab | |- ( ClWalks ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } |