Step |
Hyp |
Ref |
Expression |
1 |
|
biidd |
|- ( ( T. /\ g = G ) -> ( ( p ` 0 ) = ( p ` ( # ` f ) ) <-> ( p ` 0 ) = ( p ` ( # ` f ) ) ) ) |
2 |
|
wksv |
|- { <. f , p >. | f ( Walks ` G ) p } e. _V |
3 |
2
|
a1i |
|- ( T. -> { <. f , p >. | f ( Walks ` G ) p } e. _V ) |
4 |
|
df-clwlks |
|- ClWalks = ( g e. _V |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } ) |
5 |
1 3 4
|
fvmptopab |
|- ( T. -> ( ClWalks ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } ) |
6 |
5
|
mptru |
|- ( ClWalks ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } |