Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cncfrss | |- ( F e. ( A -cn-> B ) -> A C_ CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cncf | |- -cn-> = ( a e. ~P CC , b e. ~P CC |-> { f e. ( b ^m a ) | A. x e. a A. y e. RR+ E. z e. RR+ A. w e. a ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) } ) |
|
2 | 1 | elmpocl1 | |- ( F e. ( A -cn-> B ) -> A e. ~P CC ) |
3 | 2 | elpwid | |- ( F e. ( A -cn-> B ) -> A C_ CC ) |