Metamath Proof Explorer


Theorem cncfrss

Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion cncfrss
|- ( F e. ( A -cn-> B ) -> A C_ CC )

Proof

Step Hyp Ref Expression
1 df-cncf
 |-  -cn-> = ( a e. ~P CC , b e. ~P CC |-> { f e. ( b ^m a ) | A. x e. a A. y e. RR+ E. z e. RR+ A. w e. a ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) } )
2 1 elmpocl1
 |-  ( F e. ( A -cn-> B ) -> A e. ~P CC )
3 2 elpwid
 |-  ( F e. ( A -cn-> B ) -> A C_ CC )