Description: Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvresrn | |- ( `' R |` ran R ) = `' R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn | |- ran R = dom `' R |
|
2 | 1 | reseq2i | |- ( `' R |` ran R ) = ( `' R |` dom `' R ) |
3 | relcnv | |- Rel `' R |
|
4 | dfrel5 | |- ( Rel `' R <-> ( `' R |` dom `' R ) = `' R ) |
|
5 | 3 4 | mpbi | |- ( `' R |` dom `' R ) = `' R |
6 | 2 5 | eqtri | |- ( `' R |` ran R ) = `' R |