Description: A contraposition deduction. (Contributed by NM, 21-May-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | con4bid.1 | |- ( ph -> ( -. ps <-> -. ch ) ) |
|
Assertion | con4bid | |- ( ph -> ( ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bid.1 | |- ( ph -> ( -. ps <-> -. ch ) ) |
|
2 | 1 | biimprd | |- ( ph -> ( -. ch -> -. ps ) ) |
3 | 2 | con4d | |- ( ph -> ( ps -> ch ) ) |
4 | 1 | biimpd | |- ( ph -> ( -. ps -> -. ch ) ) |
5 | 3 4 | impcon4bid | |- ( ph -> ( ps <-> ch ) ) |