Metamath Proof Explorer


Theorem con4bid

Description: A contraposition deduction. (Contributed by NM, 21-May-1994)

Ref Expression
Hypothesis con4bid.1
|- ( ph -> ( -. ps <-> -. ch ) )
Assertion con4bid
|- ( ph -> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 con4bid.1
 |-  ( ph -> ( -. ps <-> -. ch ) )
2 1 biimprd
 |-  ( ph -> ( -. ch -> -. ps ) )
3 2 con4d
 |-  ( ph -> ( ps -> ch ) )
4 1 biimpd
 |-  ( ph -> ( -. ps -> -. ch ) )
5 3 4 impcon4bid
 |-  ( ph -> ( ps <-> ch ) )