| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 2 |
|
orc |
|- ( ( ph /\ ps ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 3 |
2
|
adantrr |
|- ( ( ph /\ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 4 |
|
olc |
|- ( ( -. ph /\ ch ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 5 |
4
|
adantrl |
|- ( ( -. ph /\ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 6 |
3 5
|
pm2.61ian |
|- ( ( ps /\ ch ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 7 |
1 6
|
jaoi |
|- ( ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 8 |
|
orc |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) ) |
| 9 |
7 8
|
impbii |
|- ( ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |