Metamath Proof Explorer


Theorem constcncf

Description: A constant function is a continuous function on CC . (Contributed by Jeff Madsen, 2-Sep-2009) (Moved into main set.mm as cncfmptc and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypothesis constcncf.1
|- F = ( x e. CC |-> A )
Assertion constcncf
|- ( A e. CC -> F e. ( CC -cn-> CC ) )

Proof

Step Hyp Ref Expression
1 constcncf.1
 |-  F = ( x e. CC |-> A )
2 ssid
 |-  CC C_ CC
3 cncfmptc
 |-  ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) )
4 2 2 3 mp3an23
 |-  ( A e. CC -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) )
5 1 4 eqeltrid
 |-  ( A e. CC -> F e. ( CC -cn-> CC ) )