Description: A constant function is a continuous function on CC . (Contributed by Jeff Madsen, 2-Sep-2009) (Moved into main set.mm as cncfmptc and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | constcncf.1 | |- F = ( x e. CC |-> A ) |
|
Assertion | constcncf | |- ( A e. CC -> F e. ( CC -cn-> CC ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constcncf.1 | |- F = ( x e. CC |-> A ) |
|
2 | ssid | |- CC C_ CC |
|
3 | cncfmptc | |- ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
|
4 | 2 2 3 | mp3an23 | |- ( A e. CC -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
5 | 1 4 | eqeltrid | |- ( A e. CC -> F e. ( CC -cn-> CC ) ) |