| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negicn |
|- -u _i e. CC |
| 2 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
| 3 |
1 2
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 4 |
|
efcl |
|- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 5 |
3 4
|
syl |
|- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 6 |
|
ax-icn |
|- _i e. CC |
| 7 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 8 |
6 7
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 9 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 10 |
8 9
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 11 |
|
mulneg12 |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 12 |
6 11
|
mpan |
|- ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 13 |
12
|
eqcomd |
|- ( A e. CC -> ( _i x. -u A ) = ( -u _i x. A ) ) |
| 14 |
13
|
fveq2d |
|- ( A e. CC -> ( exp ` ( _i x. -u A ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 15 |
|
mul2neg |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. -u A ) = ( _i x. A ) ) |
| 16 |
6 15
|
mpan |
|- ( A e. CC -> ( -u _i x. -u A ) = ( _i x. A ) ) |
| 17 |
16
|
fveq2d |
|- ( A e. CC -> ( exp ` ( -u _i x. -u A ) ) = ( exp ` ( _i x. A ) ) ) |
| 18 |
14 17
|
oveq12d |
|- ( A e. CC -> ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) = ( ( exp ` ( -u _i x. A ) ) + ( exp ` ( _i x. A ) ) ) ) |
| 19 |
5 10 18
|
comraddd |
|- ( A e. CC -> ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) |
| 20 |
19
|
oveq1d |
|- ( A e. CC -> ( ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 21 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 22 |
|
cosval |
|- ( -u A e. CC -> ( cos ` -u A ) = ( ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) / 2 ) ) |
| 23 |
21 22
|
syl |
|- ( A e. CC -> ( cos ` -u A ) = ( ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) / 2 ) ) |
| 24 |
|
cosval |
|- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 25 |
20 23 24
|
3eqtr4d |
|- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |