| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 2 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 3 |  | eqid |  |-  ( norm ` W ) = ( norm ` W ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 6 | 1 2 3 4 5 | iscph |  |-  ( W e. CPreHil <-> ( ( W e. PreHil /\ W e. NrmMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) /\ ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) /\ ( norm ` W ) = ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) ) | 
						
							| 7 | 6 | simp1bi |  |-  ( W e. CPreHil -> ( W e. PreHil /\ W e. NrmMod /\ ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) ) | 
						
							| 8 | 7 | simp1d |  |-  ( W e. CPreHil -> W e. PreHil ) |