Metamath Proof Explorer


Theorem csbie2g

Description: Conversion of implicit substitution to explicit class substitution. This version of csbie avoids a disjointness condition on x , A and x , D by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016)

Ref Expression
Hypotheses csbie2g.1
|- ( x = y -> B = C )
csbie2g.2
|- ( y = A -> C = D )
Assertion csbie2g
|- ( A e. V -> [_ A / x ]_ B = D )

Proof

Step Hyp Ref Expression
1 csbie2g.1
 |-  ( x = y -> B = C )
2 csbie2g.2
 |-  ( y = A -> C = D )
3 df-csb
 |-  [_ A / x ]_ B = { z | [. A / x ]. z e. B }
4 1 eleq2d
 |-  ( x = y -> ( z e. B <-> z e. C ) )
5 2 eleq2d
 |-  ( y = A -> ( z e. C <-> z e. D ) )
6 4 5 sbcie2g
 |-  ( A e. V -> ( [. A / x ]. z e. B <-> z e. D ) )
7 6 abbi1dv
 |-  ( A e. V -> { z | [. A / x ]. z e. B } = D )
8 3 7 syl5eq
 |-  ( A e. V -> [_ A / x ]_ B = D )