Metamath Proof Explorer


Theorem cvlposN

Description: An atomic lattice with the covering property is a poset. (Contributed by NM, 5-Nov-2012) (New usage is discouraged.)

Ref Expression
Assertion cvlposN
|- ( K e. CvLat -> K e. Poset )

Proof

Step Hyp Ref Expression
1 cvllat
 |-  ( K e. CvLat -> K e. Lat )
2 latpos
 |-  ( K e. Lat -> K e. Poset )
3 1 2 syl
 |-  ( K e. CvLat -> K e. Poset )