Metamath Proof Explorer


Theorem cxpexpz

Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpexpz
|- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) )

Proof

Step Hyp Ref Expression
1 zcn
 |-  ( B e. ZZ -> B e. CC )
2 cxpef
 |-  ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )
3 1 2 syl3an3
 |-  ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )
4 explog
 |-  ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^ B ) = ( exp ` ( B x. ( log ` A ) ) ) )
5 3 4 eqtr4d
 |-  ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) )