Description: The set of cycles (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cycls | |- ( Cycles ` G ) = { <. f , p >. | ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd | |- ( g = G -> ( ( p ` 0 ) = ( p ` ( # ` f ) ) <-> ( p ` 0 ) = ( p ` ( # ` f ) ) ) ) |
|
| 2 | df-cycls | |- Cycles = ( g e. _V |-> { <. f , p >. | ( f ( Paths ` g ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } ) |
|
| 3 | 1 2 | fvmptopab | |- ( Cycles ` G ) = { <. f , p >. | ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) } |