| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubgcyg2.b |
|- B = ( Base ` G ) |
| 2 |
|
cycsubgcyg2.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
| 3 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 4 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` G ) A ) ) = ( n e. ZZ |-> ( n ( .g ` G ) A ) ) |
| 5 |
1 3 4 2
|
cycsubg2 |
|- ( ( G e. Grp /\ A e. B ) -> ( K ` { A } ) = ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) |
| 6 |
5
|
oveq2d |
|- ( ( G e. Grp /\ A e. B ) -> ( G |`s ( K ` { A } ) ) = ( G |`s ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) ) |
| 7 |
|
eqid |
|- ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) = ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) |
| 8 |
1 3 7
|
cycsubgcyg |
|- ( ( G e. Grp /\ A e. B ) -> ( G |`s ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) e. CycGrp ) |
| 9 |
6 8
|
eqeltrd |
|- ( ( G e. Grp /\ A e. B ) -> ( G |`s ( K ` { A } ) ) e. CycGrp ) |