Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem61.m |
|- ./\ = ( meet ` K ) |
7 |
|
dalem61.o |
|- O = ( LPlanes ` K ) |
8 |
|
dalem61.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
9 |
|
dalem61.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
10 |
|
dalem61.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
11 |
|
dalem61.e |
|- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
12 |
|
dalem61.f |
|- F = ( ( R .\/ P ) ./\ ( U .\/ S ) ) |
13 |
|
eqid |
|- ( ( c .\/ P ) ./\ ( d .\/ S ) ) = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
14 |
|
eqid |
|- ( ( c .\/ Q ) ./\ ( d .\/ T ) ) = ( ( c .\/ Q ) ./\ ( d .\/ T ) ) |
15 |
|
eqid |
|- ( ( c .\/ R ) ./\ ( d .\/ U ) ) = ( ( c .\/ R ) ./\ ( d .\/ U ) ) |
16 |
|
eqid |
|- ( ( ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) .\/ ( ( c .\/ Q ) ./\ ( d .\/ T ) ) ) .\/ ( ( c .\/ R ) ./\ ( d .\/ U ) ) ) ./\ Y ) = ( ( ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) .\/ ( ( c .\/ Q ) ./\ ( d .\/ T ) ) ) .\/ ( ( c .\/ R ) ./\ ( d .\/ U ) ) ) ./\ Y ) |
17 |
1 2 3 4 5 6 7 8 9 12 13 14 15 16
|
dalem59 |
|- ( ( ph /\ Y = Z /\ ps ) -> F .<_ ( ( ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) .\/ ( ( c .\/ Q ) ./\ ( d .\/ T ) ) ) .\/ ( ( c .\/ R ) ./\ ( d .\/ U ) ) ) ./\ Y ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
|
dalem60 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( D .\/ E ) = ( ( ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) .\/ ( ( c .\/ Q ) ./\ ( d .\/ T ) ) ) .\/ ( ( c .\/ R ) ./\ ( d .\/ U ) ) ) ./\ Y ) ) |
19 |
17 18
|
breqtrrd |
|- ( ( ph /\ Y = Z /\ ps ) -> F .<_ ( D .\/ E ) ) |