| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decmul10add.1 |  |-  A e. NN0 | 
						
							| 2 |  | decmul10add.2 |  |-  B e. NN0 | 
						
							| 3 |  | decmul10add.3 |  |-  M e. NN0 | 
						
							| 4 |  | decmul10add.4 |  |-  E = ( M x. A ) | 
						
							| 5 |  | decmul10add.5 |  |-  F = ( M x. B ) | 
						
							| 6 |  | dfdec10 |  |-  ; A B = ( ( ; 1 0 x. A ) + B ) | 
						
							| 7 | 6 | oveq2i |  |-  ( M x. ; A B ) = ( M x. ( ( ; 1 0 x. A ) + B ) ) | 
						
							| 8 | 3 | nn0cni |  |-  M e. CC | 
						
							| 9 |  | 10nn0 |  |-  ; 1 0 e. NN0 | 
						
							| 10 | 9 1 | nn0mulcli |  |-  ( ; 1 0 x. A ) e. NN0 | 
						
							| 11 | 10 | nn0cni |  |-  ( ; 1 0 x. A ) e. CC | 
						
							| 12 | 2 | nn0cni |  |-  B e. CC | 
						
							| 13 | 8 11 12 | adddii |  |-  ( M x. ( ( ; 1 0 x. A ) + B ) ) = ( ( M x. ( ; 1 0 x. A ) ) + ( M x. B ) ) | 
						
							| 14 | 9 | nn0cni |  |-  ; 1 0 e. CC | 
						
							| 15 | 1 | nn0cni |  |-  A e. CC | 
						
							| 16 | 8 14 15 | mul12i |  |-  ( M x. ( ; 1 0 x. A ) ) = ( ; 1 0 x. ( M x. A ) ) | 
						
							| 17 | 3 1 | nn0mulcli |  |-  ( M x. A ) e. NN0 | 
						
							| 18 | 17 | dec0u |  |-  ( ; 1 0 x. ( M x. A ) ) = ; ( M x. A ) 0 | 
						
							| 19 | 4 | eqcomi |  |-  ( M x. A ) = E | 
						
							| 20 | 19 | deceq1i |  |-  ; ( M x. A ) 0 = ; E 0 | 
						
							| 21 | 16 18 20 | 3eqtri |  |-  ( M x. ( ; 1 0 x. A ) ) = ; E 0 | 
						
							| 22 | 5 | eqcomi |  |-  ( M x. B ) = F | 
						
							| 23 | 21 22 | oveq12i |  |-  ( ( M x. ( ; 1 0 x. A ) ) + ( M x. B ) ) = ( ; E 0 + F ) | 
						
							| 24 | 7 13 23 | 3eqtri |  |-  ( M x. ; A B ) = ( ; E 0 + F ) |