| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decmul10add.1 |
|- A e. NN0 |
| 2 |
|
decmul10add.2 |
|- B e. NN0 |
| 3 |
|
decmul10add.3 |
|- M e. NN0 |
| 4 |
|
decmul10add.4 |
|- E = ( M x. A ) |
| 5 |
|
decmul10add.5 |
|- F = ( M x. B ) |
| 6 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
| 7 |
6
|
oveq2i |
|- ( M x. ; A B ) = ( M x. ( ( ; 1 0 x. A ) + B ) ) |
| 8 |
3
|
nn0cni |
|- M e. CC |
| 9 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 10 |
9 1
|
nn0mulcli |
|- ( ; 1 0 x. A ) e. NN0 |
| 11 |
10
|
nn0cni |
|- ( ; 1 0 x. A ) e. CC |
| 12 |
2
|
nn0cni |
|- B e. CC |
| 13 |
8 11 12
|
adddii |
|- ( M x. ( ( ; 1 0 x. A ) + B ) ) = ( ( M x. ( ; 1 0 x. A ) ) + ( M x. B ) ) |
| 14 |
9
|
nn0cni |
|- ; 1 0 e. CC |
| 15 |
1
|
nn0cni |
|- A e. CC |
| 16 |
8 14 15
|
mul12i |
|- ( M x. ( ; 1 0 x. A ) ) = ( ; 1 0 x. ( M x. A ) ) |
| 17 |
3 1
|
nn0mulcli |
|- ( M x. A ) e. NN0 |
| 18 |
17
|
dec0u |
|- ( ; 1 0 x. ( M x. A ) ) = ; ( M x. A ) 0 |
| 19 |
4
|
eqcomi |
|- ( M x. A ) = E |
| 20 |
19
|
deceq1i |
|- ; ( M x. A ) 0 = ; E 0 |
| 21 |
16 18 20
|
3eqtri |
|- ( M x. ( ; 1 0 x. A ) ) = ; E 0 |
| 22 |
5
|
eqcomi |
|- ( M x. B ) = F |
| 23 |
21 22
|
oveq12i |
|- ( ( M x. ( ; 1 0 x. A ) ) + ( M x. B ) ) = ( ; E 0 + F ) |
| 24 |
7 13 23
|
3eqtri |
|- ( M x. ; A B ) = ( ; E 0 + F ) |