Description: The weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html . (Contributed by NM, 26-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dedt.1 | |- ( ( if- ( ch , ph , ps ) <-> ph ) -> ( ta <-> th ) ) |
|
dedt.2 | |- ta |
||
Assertion | dedt | |- ( ch -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedt.1 | |- ( ( if- ( ch , ph , ps ) <-> ph ) -> ( ta <-> th ) ) |
|
2 | dedt.2 | |- ta |
|
3 | ifptru | |- ( ch -> ( if- ( ch , ph , ps ) <-> ph ) ) |
|
4 | 2 1 | mpbii | |- ( ( if- ( ch , ph , ps ) <-> ph ) -> th ) |
5 | 3 4 | syl | |- ( ch -> th ) |