Metamath Proof Explorer


Theorem dedt

Description: The weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html . (Contributed by NM, 26-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023)

Ref Expression
Hypotheses dedt.1
|- ( ( if- ( ch , ph , ps ) <-> ph ) -> ( ta <-> th ) )
dedt.2
|- ta
Assertion dedt
|- ( ch -> th )

Proof

Step Hyp Ref Expression
1 dedt.1
 |-  ( ( if- ( ch , ph , ps ) <-> ph ) -> ( ta <-> th ) )
2 dedt.2
 |-  ta
3 ifptru
 |-  ( ch -> ( if- ( ch , ph , ps ) <-> ph ) )
4 2 1 mpbii
 |-  ( ( if- ( ch , ph , ps ) <-> ph ) -> th )
5 3 4 syl
 |-  ( ch -> th )