| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dedth4h.1 |  |-  ( A = if ( ph , A , R ) -> ( ta <-> et ) ) | 
						
							| 2 |  | dedth4h.2 |  |-  ( B = if ( ps , B , S ) -> ( et <-> ze ) ) | 
						
							| 3 |  | dedth4h.3 |  |-  ( C = if ( ch , C , F ) -> ( ze <-> si ) ) | 
						
							| 4 |  | dedth4h.4 |  |-  ( D = if ( th , D , G ) -> ( si <-> rh ) ) | 
						
							| 5 |  | dedth4h.5 |  |-  rh | 
						
							| 6 | 1 | imbi2d |  |-  ( A = if ( ph , A , R ) -> ( ( ( ch /\ th ) -> ta ) <-> ( ( ch /\ th ) -> et ) ) ) | 
						
							| 7 | 2 | imbi2d |  |-  ( B = if ( ps , B , S ) -> ( ( ( ch /\ th ) -> et ) <-> ( ( ch /\ th ) -> ze ) ) ) | 
						
							| 8 | 3 4 5 | dedth2h |  |-  ( ( ch /\ th ) -> ze ) | 
						
							| 9 | 6 7 8 | dedth2h |  |-  ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta ) |