Metamath Proof Explorer


Definition df-3nand

Description: The double nand. This definition allows us to express the input of three variables only being false if all three are true. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion df-3nand
|- ( ( ph -/\ ps -/\ ch ) <-> ( ph -> ( ps -> -. ch ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph
 |-  ph
1 wps
 |-  ps
2 wch
 |-  ch
3 0 1 2 w3nand
 |-  ( ph -/\ ps -/\ ch )
4 2 wn
 |-  -. ch
5 1 4 wi
 |-  ( ps -> -. ch )
6 0 5 wi
 |-  ( ph -> ( ps -> -. ch ) )
7 3 6 wb
 |-  ( ( ph -/\ ps -/\ ch ) <-> ( ph -> ( ps -> -. ch ) ) )