Metamath Proof Explorer


Definition df-bj-invc

Description: Define inversion, which maps a nonzero extended complex number or element of the complex projective line (Riemann sphere) to its inverse. Beware of the overloading: the equality ( invc0 ) = infty is to be understood in the complex projective line, but 0 as an extended complex number does not have an inverse, which we can state as ( invc0 ) e/ CCbar . Note that this definition relies on df-bj-mulc , which does not bypass ordinary complex multiplication, but defines extended complex multiplication on top of it. Therefore, we could have used directly / instead of ( iota_ ... .cc ... ) . (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion df-bj-invc
|- invc = ( x e. ( CCbar u. CChat ) |-> if ( x = 0 , infty , if ( x e. CC , ( iota_ y e. CC ( x .cc y ) = 1 ) , 0 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinvc
 |-  invc
1 vx
 |-  x
2 cccbar
 |-  CCbar
3 ccchat
 |-  CChat
4 2 3 cun
 |-  ( CCbar u. CChat )
5 1 cv
 |-  x
6 cc0
 |-  0
7 5 6 wceq
 |-  x = 0
8 cinfty
 |-  infty
9 cc
 |-  CC
10 5 9 wcel
 |-  x e. CC
11 vy
 |-  y
12 cmulc
 |-  .cc
13 11 cv
 |-  y
14 5 13 12 co
 |-  ( x .cc y )
15 c1
 |-  1
16 14 15 wceq
 |-  ( x .cc y ) = 1
17 16 11 9 crio
 |-  ( iota_ y e. CC ( x .cc y ) = 1 )
18 10 17 6 cif
 |-  if ( x e. CC , ( iota_ y e. CC ( x .cc y ) = 1 ) , 0 )
19 7 8 18 cif
 |-  if ( x = 0 , infty , if ( x e. CC , ( iota_ y e. CC ( x .cc y ) = 1 ) , 0 ) )
20 1 4 19 cmpt
 |-  ( x e. ( CCbar u. CChat ) |-> if ( x = 0 , infty , if ( x e. CC , ( iota_ y e. CC ( x .cc y ) = 1 ) , 0 ) ) )
21 0 20 wceq
 |-  invc = ( x e. ( CCbar u. CChat ) |-> if ( x = 0 , infty , if ( x e. CC , ( iota_ y e. CC ( x .cc y ) = 1 ) , 0 ) ) )