Metamath Proof Explorer


Definition df-bj-rrhat

Description: Define the real projective line. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion df-bj-rrhat
|- RRhat = ( RR u. { infty } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrhat
 |-  RRhat
1 cr
 |-  RR
2 cinfty
 |-  infty
3 2 csn
 |-  { infty }
4 1 3 cun
 |-  ( RR u. { infty } )
5 0 4 wceq
 |-  RRhat = ( RR u. { infty } )