Metamath Proof Explorer


Definition df-bnj15

Description: Define the following predicate: R is both well-founded and set-like on A . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion df-bnj15
|- ( R _FrSe A <-> ( R Fr A /\ R _Se A ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 cA
 |-  A
2 1 0 w-bnj15
 |-  R _FrSe A
3 1 0 wfr
 |-  R Fr A
4 1 0 w-bnj13
 |-  R _Se A
5 3 4 wa
 |-  ( R Fr A /\ R _Se A )
6 2 5 wb
 |-  ( R _FrSe A <-> ( R Fr A /\ R _Se A ) )