| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cX |
|- X |
| 1 |
|
cA |
|- A |
| 2 |
|
cR |
|- R |
| 3 |
1 2 0
|
c-bnj18 |
|- _trCl ( X , A , R ) |
| 4 |
|
vf |
|- f |
| 5 |
|
vn |
|- n |
| 6 |
|
com |
|- _om |
| 7 |
|
c0 |
|- (/) |
| 8 |
7
|
csn |
|- { (/) } |
| 9 |
6 8
|
cdif |
|- ( _om \ { (/) } ) |
| 10 |
4
|
cv |
|- f |
| 11 |
5
|
cv |
|- n |
| 12 |
10 11
|
wfn |
|- f Fn n |
| 13 |
7 10
|
cfv |
|- ( f ` (/) ) |
| 14 |
1 2 0
|
c-bnj14 |
|- _pred ( X , A , R ) |
| 15 |
13 14
|
wceq |
|- ( f ` (/) ) = _pred ( X , A , R ) |
| 16 |
|
vi |
|- i |
| 17 |
16
|
cv |
|- i |
| 18 |
17
|
csuc |
|- suc i |
| 19 |
18 11
|
wcel |
|- suc i e. n |
| 20 |
18 10
|
cfv |
|- ( f ` suc i ) |
| 21 |
|
vy |
|- y |
| 22 |
17 10
|
cfv |
|- ( f ` i ) |
| 23 |
21
|
cv |
|- y |
| 24 |
1 2 23
|
c-bnj14 |
|- _pred ( y , A , R ) |
| 25 |
21 22 24
|
ciun |
|- U_ y e. ( f ` i ) _pred ( y , A , R ) |
| 26 |
20 25
|
wceq |
|- ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) |
| 27 |
19 26
|
wi |
|- ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
| 28 |
27 16 6
|
wral |
|- A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
| 29 |
12 15 28
|
w3a |
|- ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 30 |
29 5 9
|
wrex |
|- E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 31 |
30 4
|
cab |
|- { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } |
| 32 |
10
|
cdm |
|- dom f |
| 33 |
16 32 22
|
ciun |
|- U_ i e. dom f ( f ` i ) |
| 34 |
4 31 33
|
ciun |
|- U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
| 35 |
3 34
|
wceq |
|- _trCl ( X , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |