Metamath Proof Explorer


Definition df-cloneop

Description: Define the function that sends a set to the class of clone-theoretic operations on the set. For convenience, we take an operation on a to be a function on finite sequences of elements of a (rather than tuples) with values in a . Following line 6 of Szendrei p. 11, the arity n of an operation (here, the length of the sequences at which the operation is defined) is always finite and non-zero, whence n is taken to be a non-zero finite ordinal. (Contributed by Adrian Ducourtial, 3-Apr-2025)

Ref Expression
Assertion df-cloneop
|- CloneOp = ( a e. _V |-> { x | E. n e. ( _om \ 1o ) x e. ( a ^m ( a ^m n ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccloneop
 |-  CloneOp
1 va
 |-  a
2 cvv
 |-  _V
3 vx
 |-  x
4 vn
 |-  n
5 com
 |-  _om
6 c1o
 |-  1o
7 5 6 cdif
 |-  ( _om \ 1o )
8 3 cv
 |-  x
9 1 cv
 |-  a
10 cmap
 |-  ^m
11 4 cv
 |-  n
12 9 11 10 co
 |-  ( a ^m n )
13 9 12 10 co
 |-  ( a ^m ( a ^m n ) )
14 8 13 wcel
 |-  x e. ( a ^m ( a ^m n ) )
15 14 4 7 wrex
 |-  E. n e. ( _om \ 1o ) x e. ( a ^m ( a ^m n ) )
16 15 3 cab
 |-  { x | E. n e. ( _om \ 1o ) x e. ( a ^m ( a ^m n ) ) }
17 1 2 16 cmpt
 |-  ( a e. _V |-> { x | E. n e. ( _om \ 1o ) x e. ( a ^m ( a ^m n ) ) } )
18 0 17 wceq
 |-  CloneOp = ( a e. _V |-> { x | E. n e. ( _om \ 1o ) x e. ( a ^m ( a ^m n ) ) } )