Step |
Hyp |
Ref |
Expression |
0 |
|
ccnext |
|- CnExt |
1 |
|
vj |
|- j |
2 |
|
ctop |
|- Top |
3 |
|
vk |
|- k |
4 |
|
vf |
|- f |
5 |
3
|
cv |
|- k |
6 |
5
|
cuni |
|- U. k |
7 |
|
cpm |
|- ^pm |
8 |
1
|
cv |
|- j |
9 |
8
|
cuni |
|- U. j |
10 |
6 9 7
|
co |
|- ( U. k ^pm U. j ) |
11 |
|
vx |
|- x |
12 |
|
ccl |
|- cls |
13 |
8 12
|
cfv |
|- ( cls ` j ) |
14 |
4
|
cv |
|- f |
15 |
14
|
cdm |
|- dom f |
16 |
15 13
|
cfv |
|- ( ( cls ` j ) ` dom f ) |
17 |
11
|
cv |
|- x |
18 |
17
|
csn |
|- { x } |
19 |
|
cflf |
|- fLimf |
20 |
|
cnei |
|- nei |
21 |
8 20
|
cfv |
|- ( nei ` j ) |
22 |
18 21
|
cfv |
|- ( ( nei ` j ) ` { x } ) |
23 |
|
crest |
|- |`t |
24 |
22 15 23
|
co |
|- ( ( ( nei ` j ) ` { x } ) |`t dom f ) |
25 |
5 24 19
|
co |
|- ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) |
26 |
14 25
|
cfv |
|- ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) |
27 |
18 26
|
cxp |
|- ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) |
28 |
11 16 27
|
ciun |
|- U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) |
29 |
4 10 28
|
cmpt |
|- ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) |
30 |
1 3 2 2 29
|
cmpo |
|- ( j e. Top , k e. Top |-> ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
31 |
0 30
|
wceq |
|- CnExt = ( j e. Top , k e. Top |-> ( f e. ( U. k ^pm U. j ) |-> U_ x e. ( ( cls ` j ) ` dom f ) ( { x } X. ( ( k fLimf ( ( ( nei ` j ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |