Metamath Proof Explorer


Definition df-comlaw

Description: The commutative law for binary operations, see definitions of laws A2. and M2. in section 1.1 of Hall p. 1, or definition 8 in BourbakiAlg1 p. 7: the value of a binary operation applied to two operands equals the value of a binary operation applied to the two operands in reversed order. By this definition, the commutative law is expressed as binary relation: a binary operation is related to a set by comLaw if the commutative law holds for this binary operation regarding this set. Note that the binary operation needs neither to be closed nor to be a function. (Contributed by AV, 7-Jan-2020)

Ref Expression
Assertion df-comlaw
|- comLaw = { <. o , m >. | A. x e. m A. y e. m ( x o y ) = ( y o x ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccomlaw
 |-  comLaw
1 vo
 |-  o
2 vm
 |-  m
3 vx
 |-  x
4 2 cv
 |-  m
5 vy
 |-  y
6 3 cv
 |-  x
7 1 cv
 |-  o
8 5 cv
 |-  y
9 6 8 7 co
 |-  ( x o y )
10 8 6 7 co
 |-  ( y o x )
11 9 10 wceq
 |-  ( x o y ) = ( y o x )
12 11 5 4 wral
 |-  A. y e. m ( x o y ) = ( y o x )
13 12 3 4 wral
 |-  A. x e. m A. y e. m ( x o y ) = ( y o x )
14 13 1 2 copab
 |-  { <. o , m >. | A. x e. m A. y e. m ( x o y ) = ( y o x ) }
15 0 14 wceq
 |-  comLaw = { <. o , m >. | A. x e. m A. y e. m ( x o y ) = ( y o x ) }