Step |
Hyp |
Ref |
Expression |
0 |
|
cconngr |
|- ConnGraph |
1 |
|
vg |
|- g |
2 |
|
cvtx |
|- Vtx |
3 |
1
|
cv |
|- g |
4 |
3 2
|
cfv |
|- ( Vtx ` g ) |
5 |
|
vv |
|- v |
6 |
|
vk |
|- k |
7 |
5
|
cv |
|- v |
8 |
|
vn |
|- n |
9 |
|
vf |
|- f |
10 |
|
vp |
|- p |
11 |
9
|
cv |
|- f |
12 |
6
|
cv |
|- k |
13 |
|
cpthson |
|- PathsOn |
14 |
3 13
|
cfv |
|- ( PathsOn ` g ) |
15 |
8
|
cv |
|- n |
16 |
12 15 14
|
co |
|- ( k ( PathsOn ` g ) n ) |
17 |
10
|
cv |
|- p |
18 |
11 17 16
|
wbr |
|- f ( k ( PathsOn ` g ) n ) p |
19 |
18 10
|
wex |
|- E. p f ( k ( PathsOn ` g ) n ) p |
20 |
19 9
|
wex |
|- E. f E. p f ( k ( PathsOn ` g ) n ) p |
21 |
20 8 7
|
wral |
|- A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p |
22 |
21 6 7
|
wral |
|- A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p |
23 |
22 5 4
|
wsbc |
|- [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p |
24 |
23 1
|
cab |
|- { g | [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p } |
25 |
0 24
|
wceq |
|- ConnGraph = { g | [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p } |