Metamath Proof Explorer


Definition df-conngr

Description: Define the class of all connected graphs. A graph is calledconnected if there is a path between every pair of (distinct) vertices. The distinctness of the vertices is not necessary for the definition, because there is always a path (of length 0) from a vertex to itself, see 0pthonv and dfconngr1 . (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion df-conngr
|- ConnGraph = { g | [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cconngr
 |-  ConnGraph
1 vg
 |-  g
2 cvtx
 |-  Vtx
3 1 cv
 |-  g
4 3 2 cfv
 |-  ( Vtx ` g )
5 vv
 |-  v
6 vk
 |-  k
7 5 cv
 |-  v
8 vn
 |-  n
9 vf
 |-  f
10 vp
 |-  p
11 9 cv
 |-  f
12 6 cv
 |-  k
13 cpthson
 |-  PathsOn
14 3 13 cfv
 |-  ( PathsOn ` g )
15 8 cv
 |-  n
16 12 15 14 co
 |-  ( k ( PathsOn ` g ) n )
17 10 cv
 |-  p
18 11 17 16 wbr
 |-  f ( k ( PathsOn ` g ) n ) p
19 18 10 wex
 |-  E. p f ( k ( PathsOn ` g ) n ) p
20 19 9 wex
 |-  E. f E. p f ( k ( PathsOn ` g ) n ) p
21 20 8 7 wral
 |-  A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p
22 21 6 7 wral
 |-  A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p
23 22 5 4 wsbc
 |-  [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p
24 23 1 cab
 |-  { g | [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p }
25 0 24 wceq
 |-  ConnGraph = { g | [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p }