| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cconngr |
|- ConnGraph |
| 1 |
|
vg |
|- g |
| 2 |
|
cvtx |
|- Vtx |
| 3 |
1
|
cv |
|- g |
| 4 |
3 2
|
cfv |
|- ( Vtx ` g ) |
| 5 |
|
vv |
|- v |
| 6 |
|
vk |
|- k |
| 7 |
5
|
cv |
|- v |
| 8 |
|
vn |
|- n |
| 9 |
|
vf |
|- f |
| 10 |
|
vp |
|- p |
| 11 |
9
|
cv |
|- f |
| 12 |
6
|
cv |
|- k |
| 13 |
|
cpthson |
|- PathsOn |
| 14 |
3 13
|
cfv |
|- ( PathsOn ` g ) |
| 15 |
8
|
cv |
|- n |
| 16 |
12 15 14
|
co |
|- ( k ( PathsOn ` g ) n ) |
| 17 |
10
|
cv |
|- p |
| 18 |
11 17 16
|
wbr |
|- f ( k ( PathsOn ` g ) n ) p |
| 19 |
18 10
|
wex |
|- E. p f ( k ( PathsOn ` g ) n ) p |
| 20 |
19 9
|
wex |
|- E. f E. p f ( k ( PathsOn ` g ) n ) p |
| 21 |
20 8 7
|
wral |
|- A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p |
| 22 |
21 6 7
|
wral |
|- A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p |
| 23 |
22 5 4
|
wsbc |
|- [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p |
| 24 |
23 1
|
cab |
|- { g | [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p } |
| 25 |
0 24
|
wceq |
|- ConnGraph = { g | [. ( Vtx ` g ) / v ]. A. k e. v A. n e. v E. f E. p f ( k ( PathsOn ` g ) n ) p } |