Description: Define the cosine function. (Contributed by NM, 14-Mar-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cos | |- cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccos | |- cos |
|
1 | vx | |- x |
|
2 | cc | |- CC |
|
3 | ce | |- exp |
|
4 | ci | |- _i |
|
5 | cmul | |- x. |
|
6 | 1 | cv | |- x |
7 | 4 6 5 | co | |- ( _i x. x ) |
8 | 7 3 | cfv | |- ( exp ` ( _i x. x ) ) |
9 | caddc | |- + |
|
10 | 4 | cneg | |- -u _i |
11 | 10 6 5 | co | |- ( -u _i x. x ) |
12 | 11 3 | cfv | |- ( exp ` ( -u _i x. x ) ) |
13 | 8 12 9 | co | |- ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) |
14 | cdiv | |- / |
|
15 | c2 | |- 2 |
|
16 | 13 15 14 | co | |- ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) |
17 | 1 2 16 | cmpt | |- ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) |
18 | 0 17 | wceq | |- cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) |