Metamath Proof Explorer


Definition df-cos

Description: Define the cosine function. (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion df-cos
|- cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccos
 |-  cos
1 vx
 |-  x
2 cc
 |-  CC
3 ce
 |-  exp
4 ci
 |-  _i
5 cmul
 |-  x.
6 1 cv
 |-  x
7 4 6 5 co
 |-  ( _i x. x )
8 7 3 cfv
 |-  ( exp ` ( _i x. x ) )
9 caddc
 |-  +
10 4 cneg
 |-  -u _i
11 10 6 5 co
 |-  ( -u _i x. x )
12 11 3 cfv
 |-  ( exp ` ( -u _i x. x ) )
13 8 12 9 co
 |-  ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) )
14 cdiv
 |-  /
15 c2
 |-  2
16 13 15 14 co
 |-  ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 )
17 1 2 16 cmpt
 |-  ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) )
18 0 17 wceq
 |-  cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) )