Description: Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-css | |- ClSubSp = ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | ccss | |- ClSubSp | |
| 1 | vh | |- h | |
| 2 | cvv | |- _V | |
| 3 | vs | |- s | |
| 4 | 3 | cv | |- s | 
| 5 | cocv | |- ocv | |
| 6 | 1 | cv | |- h | 
| 7 | 6 5 | cfv | |- ( ocv ` h ) | 
| 8 | 4 7 | cfv | |- ( ( ocv ` h ) ` s ) | 
| 9 | 8 7 | cfv | |- ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) | 
| 10 | 4 9 | wceq | |- s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) | 
| 11 | 10 3 | cab |  |-  { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } | 
| 12 | 1 2 11 | cmpt |  |-  ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) | 
| 13 | 0 12 | wceq |  |-  ClSubSp = ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) |