Description: Define the currying of F , which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cur | |- curry F = ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cF | |- F |
|
| 1 | 0 | ccur | |- curry F |
| 2 | vx | |- x |
|
| 3 | 0 | cdm | |- dom F |
| 4 | 3 | cdm | |- dom dom F |
| 5 | vy | |- y |
|
| 6 | vz | |- z |
|
| 7 | 2 | cv | |- x |
| 8 | 5 | cv | |- y |
| 9 | 7 8 | cop | |- <. x , y >. |
| 10 | 6 | cv | |- z |
| 11 | 9 10 0 | wbr | |- <. x , y >. F z |
| 12 | 11 5 6 | copab | |- { <. y , z >. | <. x , y >. F z } |
| 13 | 2 4 12 | cmpt | |- ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } ) |
| 14 | 1 13 | wceq | |- curry F = ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } ) |