Step |
Hyp |
Ref |
Expression |
0 |
|
ccurf |
|- curryF |
1 |
|
ve |
|- e |
2 |
|
cvv |
|- _V |
3 |
|
vf |
|- f |
4 |
|
c1st |
|- 1st |
5 |
1
|
cv |
|- e |
6 |
5 4
|
cfv |
|- ( 1st ` e ) |
7 |
|
vc |
|- c |
8 |
|
c2nd |
|- 2nd |
9 |
5 8
|
cfv |
|- ( 2nd ` e ) |
10 |
|
vd |
|- d |
11 |
|
vx |
|- x |
12 |
|
cbs |
|- Base |
13 |
7
|
cv |
|- c |
14 |
13 12
|
cfv |
|- ( Base ` c ) |
15 |
|
vy |
|- y |
16 |
10
|
cv |
|- d |
17 |
16 12
|
cfv |
|- ( Base ` d ) |
18 |
11
|
cv |
|- x |
19 |
3
|
cv |
|- f |
20 |
19 4
|
cfv |
|- ( 1st ` f ) |
21 |
15
|
cv |
|- y |
22 |
18 21 20
|
co |
|- ( x ( 1st ` f ) y ) |
23 |
15 17 22
|
cmpt |
|- ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) |
24 |
|
vz |
|- z |
25 |
|
vg |
|- g |
26 |
|
chom |
|- Hom |
27 |
16 26
|
cfv |
|- ( Hom ` d ) |
28 |
24
|
cv |
|- z |
29 |
21 28 27
|
co |
|- ( y ( Hom ` d ) z ) |
30 |
|
ccid |
|- Id |
31 |
13 30
|
cfv |
|- ( Id ` c ) |
32 |
18 31
|
cfv |
|- ( ( Id ` c ) ` x ) |
33 |
18 21
|
cop |
|- <. x , y >. |
34 |
19 8
|
cfv |
|- ( 2nd ` f ) |
35 |
18 28
|
cop |
|- <. x , z >. |
36 |
33 35 34
|
co |
|- ( <. x , y >. ( 2nd ` f ) <. x , z >. ) |
37 |
25
|
cv |
|- g |
38 |
32 37 36
|
co |
|- ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) |
39 |
25 29 38
|
cmpt |
|- ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) |
40 |
15 24 17 17 39
|
cmpo |
|- ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) |
41 |
23 40
|
cop |
|- <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. |
42 |
11 14 41
|
cmpt |
|- ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) |
43 |
13 26
|
cfv |
|- ( Hom ` c ) |
44 |
18 21 43
|
co |
|- ( x ( Hom ` c ) y ) |
45 |
21 28
|
cop |
|- <. y , z >. |
46 |
35 45 34
|
co |
|- ( <. x , z >. ( 2nd ` f ) <. y , z >. ) |
47 |
16 30
|
cfv |
|- ( Id ` d ) |
48 |
28 47
|
cfv |
|- ( ( Id ` d ) ` z ) |
49 |
37 48 46
|
co |
|- ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) |
50 |
24 17 49
|
cmpt |
|- ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) |
51 |
25 44 50
|
cmpt |
|- ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) |
52 |
11 15 14 14 51
|
cmpo |
|- ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) |
53 |
42 52
|
cop |
|- <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. |
54 |
10 9 53
|
csb |
|- [_ ( 2nd ` e ) / d ]_ <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. |
55 |
7 6 54
|
csb |
|- [_ ( 1st ` e ) / c ]_ [_ ( 2nd ` e ) / d ]_ <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. |
56 |
1 3 2 2 55
|
cmpo |
|- ( e e. _V , f e. _V |-> [_ ( 1st ` e ) / c ]_ [_ ( 2nd ` e ) / d ]_ <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. ) |
57 |
0 56
|
wceq |
|- curryF = ( e e. _V , f e. _V |-> [_ ( 1st ` e ) / c ]_ [_ ( 2nd ` e ) / d ]_ <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. ) |